METHODS FOR PRODUCING BACTERIA OF THE TYPE AZOTOBACTER CHROOCOCCUM TYPE IN NUTRIENT MEDIUM BY BIOTECHNOLOGICAL METHOD IN THE PRODUCTION OF BIOORGANIC FERTILIZERS
Keywords:
Azotobacter chroococcum, Ashby mannitol agar, nitrogen fixation, nutrient medium, biotechnology, phosphate solubilization, antioxidant enzymes, biofertilizer.Abstract
This article describes biotechnological methods for the cultivation of free-living nitrogen-fixing bacteria of the Azotobacter chroococcum species in nutrient media. During the study, various nutrient media were tested for the cultivation of these microorganisms, among which Ashby mannitol agar was identified as the most effective medium. This medium is nitrogen-free, which enhances the ability of the bacterium to fix atmospheric nitrogen. Also, the ability to solubilize phosphates, the activity of antioxidant enzymes (catalase and peroxidase), and other useful biological properties of A. chroococcum were studied. The results obtained in the study expand the possibilities of using these microorganisms in the production of environmentally friendly, biologically active fertilizers.
References
Voqqosov Z., Ikramova M., Olimjanova M. Production of organomineral fertilizers based on local raw materials and nitrogen-fixing microorganisms //E3S Web of Conferences. – EDP Sciences, 2024. – Т. 486. – С. 05009.
Voqqosov Z., Kanoatov K. The influence of organo-mineral fertilizers on the growth of evening apple varieties throughout the year //E3S Web of Conferences. – EDP Sciences, 2023. – Т. 390. – С. 02035.
Voqqosov Z. STUDYING THE ROLE AND MECHANISM OF MICROORGANISMS IN THE PRODUCTION OF MICROBIOLOGICAL FERTILIZERS //Scientific and Technical Journal of Namangan Institute of Engineering and Technology. – 2025. – Т. 10. – №. 1. – С. 148-152.
Zuhriddin V., Maftuna I. Determination of acceptable dimensions of biofertilizer production //Universum: технические науки. – 2024. – Т. 4. – №. 1 (118). – С. 59-62.
Fukami , J. ; Cerezin , P. ; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Expr. 2018 , 8 , 73. [ Google Scholar ] [ CrossRef ]
Hasan, M.K.; McInroy, J.A.; Kloepper, J.W. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A rewiew. Agriculture 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
Kumar, A. Impact of biofertilizer in enhancing growth and productivity of wheat: A review. Int. J. Chem. Stud. 2018, 6, 360–362. [Google Scholar]
Yadav, K.K.; Sarkar, S. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ. Ecol. 2019, 37, 89–93. [Google Scholar]
Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Ratajczak, K.; Głuchowska, K.; Waraczewska, Z.; Budka, A. An Assessment of the influence of co-inoculation with endophytic bacteria and rhizobia, and the influence of PRP SOL and PRP EBV fertilizers on the microbial parameters of soil and nitrogenase activity in yellow lupine (Lupinus luteus) cultivation. Pol. J. Environ. Stud. 2018, 315, 52–53. [Google Scholar] [CrossRef]
Ali, M.A.; Naveed, M.; Mustafa, A.; Abbas, A. The Good, the Bad, and the Ugly of Rhizosphere Microbiome: Probiotics and Plant Health; Springer: Singapore, 2017; pp. 253–290. [Google Scholar]
Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Asad, S.A.; Hafeez, F. Bacillus strains as potential alternate for zinc biofortification of maize grains. Int. J. Agric. Biol. 2018, 20, 1779–1786. [Google Scholar] [CrossRef]
Chittora, D.; Meena, M.; Barupal, T.; Swapnil, P.; Sharma, K. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem. Biophys. 2020, 22, 100737. [Google Scholar] [CrossRef]
Ahmad, M.; Zahir, Z.A.; Jamil, M.; Nazli, F.; Iqbal, Z. Field application of ACC-deaminase biotechnology for improving chickpea productivity in Bahawalpur. Soil Environ. 2017, 36, 93–102. [Google Scholar] [CrossRef]
Kumar, K.; Dasgupta, C.N.; Das, C. Cell growth kinetics of chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol. 2014, 167, 358–366. [Google Scholar] [CrossRef]
Khan, N.; Ali, S.; Shahid, M.A.; Mustafa, A.; Sayyed, R.Z.; Curá, J.A. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A review. Cells 2021, 10, 1551. [Google Scholar] [CrossRef]
Mumtaz, M.Z.; Barry, K.M.; Baker, A.L.; Nichols, D.S.; Ahmad, M.; Zahir, Z.A.; Britz, M.L. Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: A possible mechanism for Zn solubilization. Rhizosphere 2019, 12, 100170. [Google Scholar] [CrossRef]
Hussain, A.; Zahir, Z.A.; Ditta, A.; Tahir, M.U.; Ahmad, M.; Mumtaz, M.Z.; Hayat, K.; Hussain, S. Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy 2020, 10, 39. [Google Scholar] [CrossRef] [Green Version]
Hauggard-Nielsen, H.; Mundus, S.; Jensen, E. J. Grass-clover undersowing affects nitrogen dynamics in grain legume-cereal arable cropping system. Field Crops Res. 2012 , 136 , 23–31. [ Google Scholar ] [ CrossRef ]
Płaza, A.; Gąsiorowska, B.; Rzążewska, E. Legume Seedlings and Their Mixtures with Grasses as a Source of Biological Nitrogen for Table Potatoes ; UPH Siedlce Publishing House: Siedlce, Poland, 2020; p. 62. [ Google Scholar ]
Sarunaite, L.; Kadziuline, Z.; Deveikyte, I.; Kadziulis, L. Effect of legume biological nitrogen on cereals grain yield and soil nitrogen budget in double-cropping system. J. Food Agric. Environ. 2013, 11, 528–533. [Google Scholar]
Shendy, M.Z. Evaluation of four new barley cultivars productivity intercropped with berseem clover at different seeding rate in new lands in Egipt. Bull. Fac. Agric. Cairo Univ. 2015, 66, 29–39. [Google Scholar] [CrossRef]
