

ASSESSMENT OF THE IMPACT OF DRIP IRRIGATION TECHNOLOGY ON SOIL WATER PERMEABILITY IN COTTON CULTIVATION

O.M.Yusupova

Student of Bukhara State Technical University, Uzbekistan.

<https://doi.org/10.5281/zenodo.15614735>

Annotation. According to the results data obtained from the research carried out in the article, the soil water permeability at the beginning of the vegetation period was 960 cbm/ha or 0.27 mm/min for 6 hours. By the end of the vegetative period, Option 1 Production Control observed that soil water permeability decreases to 648 cbm/ha or 0.18 mm/min i.e., 0.09 mm/min over a 6-hour period. Drip-irrigated option 2 stated that soil water permeability was 736 cbm/ha or 0.21 mm/min for 6 hours, and was observed to decrease by 0.06 mm/min.

Introduction.

One of the factors that negatively affect the increase in Acorn productivity in the current period is the shortage of water that occurs during the vegetative period, while the other is the lack of consideration of local soil and hydrogeological conditions when watering acorns on most farms, their actual requirements for water during the transition phases of their growth and development. Some of the toxic chemicals that are being applied to the soil in the process of intensive irrigation, weeds and insects, are washed into the groundwater, causing them to deteriorate their ecological-reclamation state. The above reasons entail the effective use of water reserves being allocated to irrigated lands, the implementation of a system of agrotechnological measures, scientific justification and practice of irrigation methods and procedures that do not adversely affect the environmental situation.

Research style and experimental system.

In order to fulfill the above goals and objectives, field experiments were carried out on the basis of the technology of drip irrigation of acorns in the water-scarce regions of the Bukhara region. The "Bukhara-102" Acorn navichigit zoned for the Bukhara region is under a double film based on a special Chinese technology, as well as a pineapple planting scheme of 90/90 CM.scientific research was carried out on planting in order to compare it as a control.

Table 1.

Field experiments were carried out in the following system

Variant	Irrigation method and cultivation technology	Annual fertilizer norm, NPK kg / ha		
		N	P	K
1.	Egatlab irrigation (control)			
2.	Drip irrigation technology	250	175	100

The experimental options were carried out in three recurrences, and the irrigation was carried out in a 70-80-65% order compared to the pre-irrigation soil moisture ChDNS recommended by ospiti alimlpri for the regions. In the control option, when growing Acorns, it is necessary to use agrotechnologies used for this region (plowing, salt washing, watering

for wet collection, pre-planting in the ground, planting, seedling thickness, inter-row processing, fertilizing, watering, combating weeds, etc.k) was used.

And in the experimental options, certain elements of the agrotechnologies adopted for growing crops (planting system – between the row, seedling thickness, reduction in the number of cultivations, the provision of water and mineral fertilizers through drip irrigation equipment on plant demand) are improved.

Experience changes the water permeability of the dalasi soil throughout vegetesia.

Defined period					
Defined period		At the end of the vegetation			
		V-1		V-2	
cbm/ha	mm/min	cbm/ha	mm/min	cbm/ha	mm/min
960	0,27	648	0,18	736	0,21

Conclusion.

According to the results data obtained from research in experimental and control fields, soil water permeability at the beginning of the vegetational period was 960 cbm/ha or 0.27 mm/min for 6 hours. By the end of the vegetative period, Option 1 Production Control observed that soil water permeability decreases to 648 cbm/ha or 0.18 mm/min i.e., 0.09 mm/min over a 6-hour period. Drip irrigated option 2 showed soil water permeability of 736 cbm/ha or 0.21 mm/min for 6 hours and a decrease of 0.06 mm/min.

In the case of drip irrigation, it can be seen from this that the use of tractors and mechanisms to carry out seasonal irrigation and agrotechnical activities (cultivation, egat, fertilizing, weed control) of the Acorn leads to soil compaction and a negative impact on the water-physical properties of the soil, reducing soil water permeability.

References:

1. Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). BASICS OF FARMING ON SALINE AND SALINE-PRONE SOILS. Oriental renaissance: Innovative, educational, natural and social sciences, 2(6), 725-730.
2. Xamidova, S. M., Juraev, U. A., & Atamurodov, B. N. (2022). EVALUATION OF THE EFFECTIVENESS OF PHYTOMELIORATIVE MEASURES IN THE TREATMENT OF RECLAMATION OF SALINE SOILS. Web of Scientist: International Scientific Research Journal, 3(6), 835-841.
3. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). IRRIGATION OF COTTON BY WATER-SAVING METHOD. Oriental renaissance: Innovative, educational, natural and social sciences, 2(6), 718-724.
4. Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). USE OF RESOURCE-EFFICIENT IRRIGATION TECHNOLOGY IN THE REPUBLIC OF UZBEKISTAN. Science and innovation, 1(D2), 96-100.
5. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Najmuddinov, M. M., & Sobirov, K. S. (2022). EFFECTIVE USE OF WATER IN IRRIGATED AREAS. Oriental renaissance: Innovative, educational, natural and social sciences, 2(6), 810-815.
6. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). GROWING TOMATOES HYDROPONICALLY IN GREENHOUSES. Science and innovation, 1(D2), 87-90.

7. Atamurodov, B. N., Murodov, O. U., Najmuddinov, M. M., & Sobirov, K. S. (2022). IN IRRIGATION OF AGRICULTURAL CROPS, IRRIGATION WITH DIFFERENT QUALITY WATER. *Science and innovation*, 1(D2), 91-95.

8. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). SOYBEANS ARE TRANSPLANTED INTO SALINE AND SALINE SOILS TO JUSTIFY THE EFFECTIVENESS OF DRIP IRRIGATION.

9. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). IRRIGATION OF GOOSE BY WATER-SAVING METHOD.

10. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). SCIENTIFIC AND PRACTICAL IMPORTANCE OF EFFICIENT USE OF WATER IN IRRIGATED LAND.

11. Jurayev, A. Q., Jurayev, U. A., Atamurodov, B. N., & Najmuddinov, M. M. (2021). Cultivation of Corn as a Repeated Crop. *European Journal of Life Safety and Stability* (2660-9630), 10, 49-51. Jurayev, A. Q.,

12. Jurayev, U. A., Atamurodov, B. N., & Najmuddinov, M. M. (2021). Scientific Benefits and Efficiency of Drip Irrigation. *Journal of Ethics and Diversity in International Communication*, 1(6), 62-64.

13. Jurayev, A. Q., Jurayev, U. A., Atamurodov, B. N., & Najmuddinov, M. M. (2021). Aphorisms of Farming in the Method of Kidropionics. *International Journal of Discoveries and Innovations in Applied Sciences*, 1(6), 133-135.

14. Jo'rayev, U. A., Jo'rayev, A. Q., & Atamurodov, B. N. (2021). Application of Provided Irrigation Technologies in Irrigated Agriculture. *International Journal of Development and Public Policy*, 1(6), 164-166.

15. Atamurodov, B. N., Ibodov, I. N., Najmuddinov, M. M., & Najimov, D. Q. The Effectiveness of Farming in the Method of Hydroponics. *International Journal of Human Computing Studies*, 3(4), 33-36.

16. Jurayev, A. Q., Jurayev, U. A., Atamurodov, B. N., & Najmuddinov, M. M. (2021). The Main Purpose of Drip Irrigation in Irrigation Farming and Its Propagation. *European Journal of Life Safety and Stability* (2660-9630), 10, 46-48.

17. Atamurodov, B. N., & Jo'rayev, U. A. (2024, October). QIYIIN MELIORATSIYALANADIGAN YERLARNING MELIORATIV HOLATINI YAXSHILASHDA INNOVATSION SHO'R YUVISH TEKNOLOGIYASINING AHAMIYATI. In Uz-conferences (No. 1, pp. 133-138).

18. Juraev, A. K., Khamidov, M. K., Juraev, U. A., Atamurodov, B. N., Murodov, O. U., Rustamova, K. B., & Najmuddinov, M. M. (2024). The effect of deep softeners on irrigation, salt washing and cotton yield on soils with heavy mechanical composition. In BIO Web of Conferences (Vol. 103, p. 00017). EDP Sciences.

19. Jurayev, A. K., Jurayev, U. A., Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). WATERING THEIR CROPS WITH WATER OF DIFFERENT QUALITY. *Oriental renaissance: Innovative, educational, natural and social sciences*, 2(6), 1251-1257.

20. Atamurodov, B. N., Sobirov, K. S., & Najmuddinov, M. M. (2022). Rational Use of Water in Agricultural Regions. *Miasto Przyszłości*, 25, 88-89.

21. Khamidov, M., Juraev, A., Juraev, U., Atamurodov, B., Rustamova, K., Najmuddinov, A., & Nurbekov, A. (2022, July). Effects of deep softener and chemical compounds on mechanical compositions in heavy, difficult-to-ameliorate soils. In IOP Conference Series: Earth and Environmental Science (Vol. 1068, No. 1, p. 012017). IOP Publishing.