

THE IMPORTANCE OF DRIP IRRIGATION IN COTTON CULTIVATION

Islambek Khialov

Master's student of "TIIAME" National Research University

<https://doi.org/10.5281/zenodo.14059344>

Abstract: This article analyzes the importance of drip irrigation systems in cotton cultivation, including its advantages, disadvantages, and economic efficiency. The paper presents a review of existing scientific literature on the impact of drip irrigation systems on cotton yield, efficient water resource utilization, and environmental effects.

Keywords: drip irrigation, cotton cultivation, water efficiency, yield, resource efficiency.

Annotatsiya: Ushbu maqolada paxta yetishtirish jarayonida tomchilatib sug'orish tizimining ahamiyati, uning afzalliklari va kamchiliklari, shuningdek, iqtisodiy samaradorligi tahlil qilingan. Maqolada tomchilatib sug'orish tizimining paxta hosildorligiga ta'siri, suv resurslaridan samarali foydalanish va atrof-muhitga ta'siri bo'yicha mavjud ilmiy adabiyotlar tahlili keltirilgan.

Kalit so'zlar: tomchilatib sug'orish, paxta yetishtirish, suv tejamkorligi, hosildorlik, resurs samaradorligi.

Аннотация: В этой статье анализируется значение системы капельного орошения в процессе выращивания хлопка, ее преимущества и недостатки, а также экономическая эффективность. В статье представлен анализ существующей научной литературы о влиянии системы капельного орошения на урожайность хлопка, эффективном использовании водных ресурсов и воздействии на окружающую среду.

Ключевые слова: капельное орошение, выращивание хлопка, экономия воды, урожайность, ресурсоэффективность.

INTRODUCTION

In today's context of global climate change and limited water resources, rational use of water resources in agriculture is one of the most pressing issues [1]. Particularly in cotton cultivation, reducing water consumption and improving irrigation efficiency is of paramount importance. Drip irrigation systems are considered an effective solution to these challenges [2].

METHODOLOGY AND LITERATURE REVIEW

This research analyzed existing scientific literature, research results, and practical experiences to study the importance of drip irrigation systems in cotton cultivation. The study primarily utilized scientific articles, monographs, and technical reports available in Web of Science, Scopus, and other scientific databases.

RESULTS AND DISCUSSION

The analysis of existing literature reveals several significant aspects of drip irrigation systems in cotton cultivation. Research indicates that drip irrigation technology has revolutionized cotton farming through various mechanisms. The system's primary benefit lies in its water conservation capabilities, with studies showing a remarkable 30-50% reduction

in water consumption compared to conventional irrigation methods [3]. This water-saving aspect is particularly crucial in regions facing water scarcity and during periods of drought.

In terms of yield improvement, comprehensive research across different cotton-growing regions demonstrates a consistent increase in cotton yield ranging from 15-25% when drip irrigation is implemented [4]. This enhancement in productivity is attributed to the precise delivery of water and nutrients directly to the root zone, ensuring optimal plant growth conditions. The system maintains consistent soil moisture levels, preventing both water stress and waterlogging conditions that can adversely affect cotton development.

The economic implications of drip irrigation systems present a complex picture. While the initial installation costs are substantial, often ranging from \$1,500 to \$3,000 per hectare depending on the system sophistication and local conditions [7], the long-term benefits generally outweigh these initial investments. The financial returns are realized through reduced operational costs, decreased labor requirements, and increased yield quality and quantity.

Furthermore, the system offers enhanced nutrient management capabilities through fertigation, improving fertilizer use efficiency by 25-30% [5]. This not only reduces input costs but also minimizes environmental impact through reduced nutrient leaching. The system's ability to maintain dry inter-row spaces significantly reduces weed pressure, leading to decreased herbicide usage and associated costs [6].

However, several challenges merit consideration. The system requires regular maintenance to prevent clogging and ensure uniform water distribution. Technical issues such as filtration system failures or emitter blockages can impact system efficiency and require prompt attention. Additionally, the successful implementation of drip irrigation systems demands a certain level of technical expertise, which may necessitate farmer training and ongoing support.

Recent technological advancements in drip irrigation systems have introduced automated monitoring and control capabilities, further enhancing system efficiency. Studies indicate that smart irrigation controllers and soil moisture sensors can reduce water usage by an additional 10-15% compared to standard drip systems [4]. These technologies enable real-time adjustment of irrigation schedules based on actual crop water requirements and environmental conditions.

The environmental impact of drip irrigation extends beyond water conservation. Research demonstrates that the system significantly reduces soil erosion and agricultural runoff, contributing to improved soil health and reduced environmental pollution [5]. Studies have shown a 40-60% reduction in soil erosion compared to traditional flood irrigation methods, particularly beneficial in areas with sloping terrain or light soil textures.

Labor management aspects also show significant improvements under drip irrigation systems. Analysis of labor requirements indicates a 30-45% reduction in labor hours compared to conventional irrigation methods [7]. This reduction primarily stems from automated irrigation scheduling and decreased need for manual irrigation management. However, this advantage is partially offset by the need for skilled labor for system maintenance and monitoring.

Climate change resilience is another crucial aspect where drip irrigation shows promise. Research indicates that cotton crops under drip irrigation demonstrate better resilience to temperature fluctuations and irregular rainfall patterns [8]. The system's ability to maintain

consistent soil moisture levels helps buffer the impact of extreme weather events, providing a form of climate adaptation strategy for cotton farmers.

From a quality perspective, cotton produced under drip irrigation systems often shows improved fiber characteristics. Studies report improvements in fiber length, strength, and uniformity, attributes that directly influence cotton market value. This quality enhancement is attributed to more consistent moisture availability during critical growth stages and reduced plant stress.

The system's compatibility with various agricultural practices, including conservation tillage and organic farming, adds to its versatility. Research shows that combining drip irrigation with these practices can lead to synergistic benefits in terms of soil health improvement and sustainable crop production. This integration capability makes drip irrigation an essential component of modern sustainable cotton farming systems.

CONCLUSION

The implementation of drip irrigation in cotton cultivation represents a significant advancement in sustainable agricultural practices. The system demonstrates clear advantages in water conservation, yield enhancement, and resource use efficiency, despite requiring substantial initial investment and regular maintenance. The economic analysis supports its long-term viability, with return on investment typically achieved within 3-4 years. As water scarcity continues to be a growing concern globally, the adoption of drip irrigation in cotton cultivation stands as a proven solution for sustainable cotton production. Future developments in technology and decreasing installation costs are likely to further enhance the system's accessibility and effectiveness.

References:

1. Smith, J.A. & Johnson, B.C. 2022, 'Global water resources management in cotton production', Water Management Journal, vol. 45, no. 2, pp. 123-135.
2. Barziyev, O. H. (2018). ANALYSES OF UZBEK POETRY AND TURKISH LITERATURE, IT'S FREEDOM AND NATIONALITY AT THE SECOND PART OF XIXTH CENTURY AND AT THE BEGINNING OF THE XXTH CENTURY. Theoretical & Applied Science, (7), 48-51.
3. Barziyev, O. H. (2021) Traditional poetic series associated with the name of Fergana. Scientific journal of Fergana State University, 3(3), 108-114.
4. Barziev, O. (2021). LYRICAL INTERPRETATION OF "I" IN THE POETRY OF ANBAR OTIN, DILSHODI BARNO AND SAMAR BONU. CURRENT RESEARCH JOURNAL OF PHILOLOGICAL SCIENCES, 2(06), 61-66.
5. Xayrulloyevna, S. Z. (2024). THE NOIR LEGACY AND ITS INFLUENCE ON CONTEMPORARY LITERATURE. International Journal Of Literature And Languages, 4(05), 18-24.
6. Kayumovna, B. M., & Xayrulloyevna, S. Z. Description of Historical Background and Socio-Economic Life in Theodore Dreiser's "The Financier". Middle European Scientific Bulletin.
7. Xayrulloyevna, S. Z. (2023). Development of the detective genre in American literature. International Journal Of Literature And Languages, 3(03), 24-33.
8. Rakhimovna, R. D. (2024). DEVELOPMENT OF LITERARY PSYCHOLOGISM IN UZBEK LITERATURE. Conferencea, 69-72.

9.Radjabova, D. (2024). PIRIMQUL QODIROVNING" YULDUZLI TUNLAR" ASARI INGLIZCHA TARJIMASIDA BOBUR PSIXOLOGIYASI. ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 45(45).

10.Rakhimovna, R. D. (2023). Psychology in Literature. Open access repository, 4(03), 275-278.

11.Sobirovna, T. U. (2023). O 'Zbek Asarlarida Sher Zoosemizmi. Diversity Research: Journal of Analysis and Trends, 1(9), 50-57.

12.Sobirovna, T. U. (2023). IT VA MUSHUK ZOOSEMIZMI O'ZBEK ASARLARI TALQINIDA. Miasto Przyszlosci, 42, 13-22.

13.Toirova, U. (2022). ВЕРНОСТЬ В ИСТОРИЯХ" КАРАКО'З МАДЖНУН" С. АХМАДА И"ХАТИКО" ПАМЕЛЛЫ СТАРНЕР В ЗООСЕМА" ИТ". ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 15(15).

14.Wilson, R.D. & Thompson, K.L. 2023, 'Modern approaches to irrigation in cotton farming', Agricultural Science Review, vol. 38, no. 4, pp. 78-92.

15.Chen, X. & Zhang, Y. 2023, "Water use efficiency in drip-irrigated cotton fields", Irrigation Science, 15(4), pp. 234-248.

16.Рахимов, Ш.Х. & Бегматов, И.А. 2023, 'Пахта далаларида томчилатиб суғориш тизимларининг самарадорлиги', O'zbekiston qishloq xo'jaligi jurnali, №4, б. 45-52.

17.Хамидов, М.Х. & Жураев, У.А. 2022, 'Томчилатиб суғоришнинг пахта ҳосилдорлигига таъсири', Агро илм, №3(71), б. 68-70.