

DEEP BURIAL OF GROUNDWATER IN OIL AND GAS FIELDS: AN INFORMATIVE OVERVIEW

Abdullaev B.D.

Doctor of Geological and Mineralogical Sciences, SE «Institute GIDROINGEO», Tashkent, Uzbekistan.

Nasibov B.R.

- phd student. National Research University "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers"

Abdurahmonov I.I.

Master's student, National Research University "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers"

<https://doi.org/10.5281/zenodo.12666453>

Abstract

The deep burial of groundwater in oil and gas fields is a complex hydrogeological process influenced by various geological, hydrological, and anthropogenic factors. Understanding this phenomenon is crucial for efficient resource extraction, environmental protection, and sustainable management of groundwater resources. This article provides a comprehensive overview of the deep burial of groundwater, detailing its occurrence, methods of study, results from recent research, and implications for the oil and gas industry. This article delves into the complex interplay between groundwater and hydrocarbons in oil and gas fields, focusing on the deep burial of groundwater and its implications. The study highlights the significance of hydrogeological characteristics, such as aquifers, aquitards, porosity, permeability, and hydraulic conductivity, in understanding groundwater flow, storage, and quality. It also explores water-hydrocarbon interactions, including interfacial tension, emulsions, phase separation, and solubility, emphasizing their impact on environmental and industrial processes. The introduction outlines the critical need for optimizing oil and gas extraction while minimizing environmental impacts and ensuring groundwater sustainability. It also addresses public concerns related to hydraulic fracture stimulation, the management of Oil Field Produced Water (OFPW), and the environmental and health risks associated with unconventional oil production. The methodology section describes a multidisciplinary approach, combining geological, geophysical, hydrological, and chemical methods to study the deep burial of groundwater. These methods include seismic surveys, hydrological modeling, chemical analysis, and drilling and well logging. In the results and discussion, the article presents a comparative analysis of various hydrogeological characteristics and water-hydrocarbon interactions. It underscores the importance of effective groundwater management to prevent issues such as aquifer depletion, land subsidence, saltwater intrusion, contamination, and loss of biodiversity. The study also discusses the need for monitoring groundwater levels, regulating extraction rates, and employing environmentally sustainable technologies. The conclusion reiterates the importance of comprehensive understanding and continued study of hydrogeological characteristics and water-hydrocarbon interactions. It emphasizes that such knowledge is crucial for optimizing oil and gas production, protecting groundwater resources, and minimizing environmental impacts. The article ultimately calls for sustainable groundwater management practices to mitigate environmental risks and promote the responsible use of subsurface water resources.

Keywords: deep burial, groundwater, oil and gas fields, hydrogeology, subsurface water, petroleum extraction, environmental impact

Introduction

Groundwater in oil and gas fields often exists at significant depths, where it interacts with petroleum reservoirs. The deep burial of groundwater involves the movement and entrapment of water within geological formations, typically occurring over geological timescales [1-3]. This process is vital for understanding the distribution of subsurface water, its quality, and its interaction with hydrocarbons. The study of deep-buried groundwater is essential for optimizing oil and gas extraction, minimizing environmental impacts, and ensuring the sustainability of groundwater resources [4-6]. As a result of the independence of our republic, incomparable opportunities have been created that will contribute to the development of the oil and gas industry. In this regard, the policy of achieving the provision of oil and oil products to our country, gasification to the remotest regions of the country is carried out as a priority. New possibilities of our country are emerging. But here it is worth noting that our reserves are not unlimited, we must always take care not to waste them [7-8].

Hydraulic fracture stimulation (HFS) of unconventional oil and gas reservoirs has garnered public concern due to potential issues such as fugitive gas emissions, fracture height growth, induced seismicity, and changes in groundwater quality. A thorough evaluation of the potential pathways for fugitive gas seepage during stimulation, production, and after well abandonment reveals that the primary concern is the quality of casing installations [9-10]. To effectively manage Oil Field Produced Water (OFPW), it is essential to characterize and identify the pollutants present. This characterization is critical for selecting appropriate treatment processes. Post-treatment, OFPW is typically reintroduced into the depleted reservoir for pressure maintenance via injection wells. Alternatively, it may be injected into disposal wells for disposal purposes [11-13].

Modern drilling techniques like horizontal drilling and hydraulic fracturing have enabled the extraction of unconventional oil from the Bakken Shale Formation in Montana, North Dakota (ND), and Saskatchewan. Most of this production occurs in ND, boosting its economy, job market, and GDP. However, this unconventional oil production (UOP) can have environmental and health impacts, particularly from the large volumes of saline wastewater generated. This wastewater, characterized by high total dissolved solids and elevated toxic and radioactive substances, is mostly transported to Class II injection wells for disposal. Spills during transportation pose a risk of contaminating drinking water resources. This study critically reviews the potential water resource impacts from freshwater withdrawals, produced water management, and spills due to leaks or accidents related to UOP in the ND Bakken shale [14-19]. Initial drilling extends from ground level to a few hundred feet deep, typically above the target zone, using air or mud to remove cuttings from the wellbore. After this, surface casing is set to protect shallow drinking water aquifers from deeper contaminants. However, the initial drilling must pass through any shallow aquifer rock, which can cause temporary turbidity in nearby drinking water wells. When air is used as a circulating fluid, it can move into aquifers, increase pressure gradients, and cause faster, uncharacteristic groundwater flow [20-22].

Method: The article is analyzed by several methods. A multidisciplinary approach combining geological, geophysical and hydrological methods is used to study the deep burial of groundwater. Mapping of geological formations and determination of aquifers and confining

layers were compared, taking into account geological research as the main methods. In the article, the research of scientists in this field was studied through several methods. These methods include Geophysical methods, that is, the use of seismic, resistivity and electromagnetic surveys to determine underground structures and water content, hydrological modeling, that is, the simulation of groundwater flow and its interaction with oil and gas reservoirs using numerical models, chemical analysis i.e. assessing the composition of groundwater to understand its origin, movement and potential contamination and the next method is drilling and well logging i.e. direct sampling and analysis of groundwater from deep wells to obtain empirical data.

Results and Discussion

As a result of the conducted analysis, several main directions of deep burial of underground water in oil and gas fields were studied and their comparative analysis was carried out.

Hydrogeological characteristics refer to the properties and behaviors of groundwater and the geological formations that contain it. These characteristics are critical for understanding groundwater flow, storage, and quality, which are essential for water resource management, environmental protection, and various engineering applications. Here are some key hydrogeological characteristics:

Aquifers and Aquitards: Geological formations that can store and transmit significant quantities of groundwater. They are typically composed of permeable materials like sand, gravel, or fractured rock. Layers of rock or sediment with low permeability that restrict the flow of groundwater. Examples include clay and unfractured rock. **Porosity:** The percentage of the total volume of a rock or sediment that consists of voids or pores. It indicates the storage capacity of the material for groundwater. **Permeability:** The ability of a material to transmit water through its pores or fractures. High permeability allows for easy movement of groundwater, while low permeability restricts flow. **Hydraulic Conductivity:** A measure of how easily water can move through porous media. It depends on both the permeability of the material and the viscosity of the fluid. **Specific Yield and Specific Retention:** The portion of groundwater that can be drained from an aquifer by gravity. The portion of groundwater that remains bound in the material due to capillary forces.

Groundwater Flow. The movement of groundwater through aquifers, driven by hydraulic gradients. Flow can be influenced by natural factors (e.g., topography, geology) and human activities (e.g., pumping). **Hydraulic Gradient:** The slope of the water table or potentiometric surface, driving groundwater flow from areas of higher to lower hydraulic head. **Recharge and Discharge Areas:** **Recharge Areas:** Locations where water infiltrates the ground to replenish an aquifer. **Discharge Areas:** Locations where groundwater emerges at the surface, such as springs, rivers, or wetlands. **Transmissivity:** The rate at which groundwater can move through an aquifer cross-section. It is a product of hydraulic conductivity and the saturated thickness of the aquifer. **Storage Coefficient:** The volume of water an aquifer releases or stores per unit area per unit change in hydraulic head. It is important for understanding the responsiveness of an aquifer to pumping or recharge. **Contaminant Transport:** The movement and dispersion of contaminants through groundwater systems. Understanding this process is crucial for managing and mitigating pollution. **Water Quality:** The chemical composition of groundwater, which can be influenced by natural processes (e.g., mineral dissolution) and human activities (e.g., agricultural runoff, industrial waste). **Groundwater-Surface Water Interaction:** The exchange of water between

groundwater and surface water bodies (e.g., rivers, lakes). This interaction is important for maintaining ecosystem health and water availability. Understanding these hydrogeological characteristics is essential for effective groundwater management, environmental protection, and sustainable development.

Water-Hydrocarbon Interaction Water-hydrocarbon interactions are significant in various fields, including chemistry, environmental science, and the petroleum industry. These interactions involve the behavior of water and hydrocarbon molecules when they come into contact. Hydrocarbons are typically hydrophobic, meaning they repel water. This effect is due to the difference in polarity between water molecules (polar) and hydrocarbons (nonpolar). When mixed, water molecules tend to form hydrogen bonds with each other, excluding hydrocarbons. **Interfacial Tension**. The boundary between water and hydrocarbons exhibits interfacial tension, a force that acts to minimize the surface area of the interface. This tension can influence the formation of emulsions, where one liquid is dispersed as small droplets within another. **Emulsions**. An emulsion is a mixture of two immiscible liquids, such as water and hydrocarbons. Emulsifiers or surfactants can stabilize these mixtures by reducing interfacial tension. Emulsions are common in food products, cosmetics, and the petroleum industry. **Phase Separation**. Given sufficient time, water and hydrocarbons will often separate into distinct layers due to differences in density and polarity. The hydrocarbon phase typically floats on top of the water phase because hydrocarbons are less dense than water.

Solubility. Hydrocarbons have very low solubility in water. Conversely, water has very low solubility in hydrocarbons. The extent of solubility depends on the specific types of hydrocarbons and environmental conditions such as temperature and pressure. **Environmental Impact**. Water-hydrocarbon interactions play a crucial role in oil spill behavior and remediation. Hydrocarbons released into aquatic environments can form slicks, emulsify, or interact with sediments and marine organisms. **Industrial Processes**. In the petroleum industry, water-hydrocarbon interactions are important in processes like drilling, where water-based drilling fluids can interact with oil formations, and in refining, where separation of water and oil phases is critical. **Molecular Interaction**. On a molecular level, the interactions can be studied using techniques such as molecular dynamics simulations, which provide insights into the behavior and structure of water-hydrocarbon mixtures at the atomic scale. Understanding these interactions helps in designing more efficient industrial processes, improving environmental management practices, and developing new materials and products. The extraction of oil and gas can lead to the contamination of deep groundwater with hydrocarbons and other pollutants. Understanding groundwater dynamics helps in mitigating these risks through better well management and contamination control.

Groundwater plays a crucial role in maintaining the balance of subsurface water resources, and its deep burial is a significant factor in this process. The over-extraction of oil and gas can disrupt this delicate balance, leading to a series of long-term environmental consequences. These consequences include, **Depletion of Aquifers**: Over-extraction can lower water tables, making it difficult for natural processes to replenish groundwater supplies. **Land Subsidence**: The removal of large volumes of oil, gas, or water from the ground can lead to a decrease in pressure, causing the land above to sink or subside. This can damage infrastructure and reduce the land's ability to store water. **Saltwater Intrusion**: In coastal areas, over-extraction of groundwater can lead to saltwater from the sea seeping into freshwater aquifers, making the water unsuitable for drinking and irrigation. **Contamination**: The extraction process can

introduce contaminants into groundwater. Chemicals used in drilling and extraction can migrate into water supplies, posing risks to human health and ecosystems. **Loss of Biodiversity:** Changes in groundwater levels can affect surface water bodies, wetlands, and the ecosystems that depend on them. This can lead to the loss of plant and animal species that rely on these habitats. To ensure sustainability, it is essential to manage the extraction of subsurface resources carefully. This involves monitoring groundwater levels, regulating the rate of extraction, and employing technologies that minimize environmental impact. Additionally, restoring and protecting natural recharge areas can help maintain the balance of groundwater resources.

Conclusion

The deep burial of groundwater in oil and gas fields is a significant aspect of hydrogeology with direct implications for resource extraction and environmental sustainability. By employing a combination of geological, geophysical, hydrological, and chemical methods, researchers can gain a comprehensive understanding of this process. Continued study and monitoring are essential for optimizing oil and gas production while protecting valuable groundwater resources and minimizing environmental impacts. The study of deep groundwater burial in oil and gas fields reveals critical insights into hydrogeological characteristics and water-hydrocarbon interactions. Understanding the properties of aquifers and aquitards, including porosity, permeability, and hydraulic conductivity, is essential for managing groundwater flow, storage, and quality. The interactions between water and hydrocarbons, characterized by interfacial tension, emulsions, and phase separation, have significant implications for both industrial processes and environmental management. Effective groundwater management is crucial to mitigate risks associated with oil and gas extraction. Over-extraction can lead to aquifer depletion, land subsidence, saltwater intrusion, contamination, and loss of biodiversity. Therefore, it is imperative to monitor groundwater levels, regulate extraction rates, and employ environmentally sustainable technologies. Protecting natural recharge areas and understanding contaminant transport are also vital for maintaining groundwater resources and ensuring long-term environmental protection. In summary, a comprehensive understanding of hydrogeological characteristics and water-hydrocarbon interactions is essential for sustainable groundwater management in oil and gas fields. This knowledge helps mitigate environmental risks, supports the development of efficient industrial processes, and promotes the sustainable use of subsurface water resources..

References:

- 1.Бойбобоев, И. У., Бегматов, Р. М., & Абдуллаев, Б. Д. (2003). Современное состояние водных ресурсов Сохского месторождения подземных вод и прогноз их изменения под влиянием техногенных факторов. Т.: ГИДРОИНГЕО, 33-38.
- 2.Абдуллаев, Б. Д., Абдуллаев, Б. Д., & Холмирзаев, М. Ж. (2021). Влияние системы менеджмента качества буровых растворов на повышение эффективности сооружения скважин.
- 3.Abdullaev, B. D., & Usmonov, B. K. (2012). Hydrogeochemical conditions of the Sokh groundwater deposit. In Problematic issues of hydrogeology, engineering geology, geoecology and ways to solve them, Republican Scientific and Technical Conference (pp. 173-174).

4.Абдуллаев, Б. Д., Григоренко, А. В., Карпизина, Г. И., Гендель, Г. Л., Клейменов, А. В., & Клейменова, И. Е. (2007). Изучение состояния загрязнения нефтепродуктами грунтовых вод в пределах конуса выноса. Защита окружающей среды в нефтегазовом комплексе, (3), 15-17.

5.Nasibov, B. R., & Abdullaev, B. D. (2023). IMPACT OF CLIMATE CHANGE ON GROUNDWATER RESOURCES. Ethiopian International Journal of Multidisciplinary Research, 10(11), 441-449.

6.Dadajonovich, A. B., Temirkhojaevich, S. A., & Ishkulovich, R. R. (2024). MONITORING OF GROUNDWATER QUALITY CHANGES IN IRRIGATED LANDS OF KASHKADARYA REGION. British Journal of Global Ecology and Sustainable Development, 27, 11-21.

7.Jellicoe, K., McIntosh, J. C., & Ferguson, G. (2022). Changes in deep groundwater flow patterns related to oil and gas activities. Groundwater, 60(1), 47-63.

8.Allis, R. G., Zhan, X., Evans, C., & Kroopnick, P. (1997). Groundwater flow beneath Mt Taranaki, New Zealand, and implications for oil and gas migration. New Zealand Journal of Geology and Geophysics, 40(2), 137-149.

9.Dusseault, M., & Jackson, R. (2014). Seepage pathway assessment for natural gas to shallow groundwater during well stimulation, in production, and after abandonment. Environmental Geosciences, 21(3), 107-126.

10.Veil, J. A., Puder, M. G., & Elcock, D. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane (No. ANL/EA/RP-112631). Argonne National Lab., IL (US).

11.Rajbongshi, A., & Gogoi, S. B. (2024). A Review on Oilfield Produced Water and Its Treatment Technologies. Petroleum Research.

12.Jackson, R. E., Gorody, A. W., Mayer, B., Roy, J. W., Ryan, M. C., & Van Stempvoort, D. R. (2013). Groundwater protection and unconventional gas extraction: The critical need for field-based hydrogeological research. Groundwater, 51(4), 488-510.

13.McMahon, P. B., Landon, M. K., Stephens, M. J., Taylor, K. A., Wright, M. T., Hansen, A. M., ... & Ballentine, C. J. (2024). Land-use interactions, Oil-Field infrastructure, and natural processes control hydrocarbon and arsenic concentrations in groundwater, Poso Creek Oil Field, California, USA. Applied Geochemistry, 168, 106025.

14.Shrestha, N., Chilkoor, G., Wilder, J., Gadhamshetty, V., & Stone, J. J. (2017). Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale. Water research, 108, 1-24.

15.Chang, H., Liu, B., Crittenden, J. C., & Vidic, R. D. (2019). Resource recovery and reuse for hydraulic fracturing wastewater in unconventional shale gas and oil extraction.

16.Anders, R., Landon, M. K., McMahon, P. B., Kulogoski, J. T., Hunt, A. G., & Davis, T. A. (2022). Occurrence of water and thermogenic gas from oil-bearing formations in groundwater near the Orcutt Oil Field, California, USA. Journal of Hydrology: Regional Studies, 41, 101065.

17.Dadajonovich, A. B., Temirkhojaevich, S. A., & Ishkulovich, R. R. (2024). MONITORING OF GROUNDWATER QUALITY CHANGES IN IRRIGATED LANDS OF KASHKADARYA REGION. British Journal of Global Ecology and Sustainable Development, 27, 11-21.

18.Коваль, М. Е., Евдокимов, Д. В., Капитонов, В. А., Фоменко, О. А., Ножкина, О. В., Сорокин, С. А., & Спиридовон, П. Ю. (2021). Комплексный подход к повышению эффективности применения буровых растворов. Нефть. Газ. Новации, (2), 40-44.

19. Gregory, K. B., Vidic, R. D., & Dzombak, D. A. (2011). Water management challenges associated with the production of shale gas by hydraulic fracturing. *Elements*, 7(3), 181-186.
20. Rodriguez, R. S., & Soeder, D. J. (2015). Evolving water management practices in shale oil & gas development. *Journal of Unconventional Oil and Gas Resources*, 10, 18-24.
21. Gregory, K. B., Vidic, R. D., & Dzombak, D. A. (2011). Water management challenges associated with the production of shale gas by hydraulic fracturing. *Elements*, 7(3), 181-186.
22. Chang, H., Liu, B., Crittenden, J. C., & Vidic, R. D. (2019). Resource recovery and reuse for hydraulic fracturing wastewater in unconventional shale gas and oil extraction.