INTERNATIONAL BULLETIN OF ENGINEERING

AND TECHNOLOGY

CONTAINERS AND VIRTUAL MACHINES
Abduaziz Ziyodov
Student at Inha University in Tashkent

abduaziz.ziyodov@mail.ru
https://doi.org/10.5281/zenodo.8213488

Abstract

Containers have become dominant in cloud development, and deployment techniques.
There are key differences between containers and virtual machines, and their use cases. They
both provide complete isolation and make your application independent. This article
discusses the common use cases of both technology and key differences and answers the
question of how they work.

Keywords

Containers, virtual machines, docker, hypervisor, deployment, system, cloud, DevOps

Introduction

Every software(application) has it is own dependencies, environment, etc. For
example, engineers developed a web service that runs on only Linux-based operating systems.
It may have something to do with the kernel, or it may have its tuning. Therefore, it should be
only deployed/run on Linux-based machines. What if they have to do it with a different type
of machine? The answer is there are two kinds of solutions: containers and virtual machines.
You don’t have to re-write the entire software for another environment.
In other words, those two technologies can package your software into one “box”, which is
portable, engineers bring or run it everywhere. They solved our traditional problem: “It works
only with my machine”.

Virtual machines

Virtual Machine Virtual Machine Virtual Machine

App A

Guest Guest Guest
Operating Operating Operating

System System System

159

IBET | Volume 3, Issue 7, July



mailto:abduaziz.ziyodov@mail.ru

INTERNATIONAL BULLETIN OF ENGINEERING

AND TECHNOLOGY

Virtual machines provide the functionality of a physical computer. There are two types
of virtual machines:

e System virtual machines
e Process virtual machines

System virtual machines also known as full-virtualization VMs, act like physical
machines. They give full power to execute the entire operating system. It means you can run
multiple isolated operating systems in one machine, and we can say that they are duplicates of
a real computer machine. Everything is controlled by a hypervisor.

Process virtual machines are designed to execute computer programs in a platform-
independent environment. It runs as a normal application inside an operating system and
supports a single process. The main aim of process virtual machines is to provide a platform-
independent programming environment. That's why we can run Java, .net and Python
everywhere. They have their virtual machine, that runs every operating system and interprets
your source code. However, the article will focus on full-virtualization/system virtual
machines.

Virtual machines run on hypervisors which can be hardware or software-based.

Hypervisor

Hypervisor is a kind of software/hardware that creates, runs and manages virtual
machines. The computer that runs the hypervisor is considered as host machine (main
computer), and each virtual machine is called a guest machine. There are also two types of
hypervisors:

e Native or bare-metal hypervisors
e Hosted hypervisors

Type-1 hypervisors can directly interact with the host machine’s hardware,
hypervisors can control hardware to manage guest operating systems. The first hypervisor
software was developed by IBM in the 1960s. Hypervisors allow guest machines to be created
instantly, allowing more efficient utilization.

Nowadays, cloud computing becomes popular, the hypervisors have emerged as an invaluable
tool for running virtual machines. Hypervisors are key technology, to make cloud computing
possible.

Virtual machines: use cases

1. Build a malware lab
Virtual machines can act like sandboxes. It refers to an isolated space, where any software can
run without impacting the host machine. It means you can test malicious software, viruses,
etc. It is widely used by cybersecurity analysts.

2. Cross-platform development
Imagine you are developing Windows software on your Windows computer. You may want to
release the Linux version of this software, but then you need to install the entire Linux on
your machine. But, by using virtual machines you can create a Linux environment inside of
your host operating system, and then you can test/develop your software.

3. Run outdated software
You can create a virtual version of an old OS, like Windows XP and install your favourite old
software to this VM.

Containers

160

IBET | Volume 3, Issue 7, July




INTERNATIONAL BULLETIN OF ENGINEERING

AND TECHNOLOGY

Containerized Applications

i 7=
g g

Host Operating System

A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing environment
to another. A Docker container image is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime, system tools,
system libraries and settings?.

They first appeared decades ago, but most modern developers remember 2013 as the
start of the modern container era with the introduction of Docker.

Containers are more lightweight than compared to virtual machines. They share the
host machine’s operating system kernel and container files are small. We can spin up quickly,
and better support cloud-native applications that scale horizontally. They have similarities
with VMs, such as they are also portable and platform-independent. Containers carry all their
dependencies, and you can run them everywhere by using a container engine. Also, they have
better utilization than VMs.

The main use case of containers is deployment. When you need ultimate portability
across multiple environments, using containers might be the easiest decision ever.

Containers: use cases

1. Microservices: containers are small and lightweight, which makes sense. Traditionally,
microservices are quite many, and by the small size of containers, we can scale many
microservices in an isolated environment.

2. DevOps: by combining microservices and containers, many teams embrace DevOps as
the way they build, ship and run the software.

3. Application modernizing and migration.

Virtual machines versus Containers

In virtual machines, hypervisor virtualizes physical hardware where containers
instead of virtualising the underlying hardware virtualize the operating system. Every
application contains only the application source code and its dependencies. Containers are

! https://www.docker.com/resources/what-container, Development, Shipment and Deployment

161

IBET | Volume 3, Issue 7, July



https://www.docker.com/resources/what-container

INTERNATIONAL BULLETIN OF ENGINEERING

AND TECHNOLOGY

flexible, and they are perfect for a multi-cloud world.

Containers are also ideal for automation and DevOps pipelines, including continuous
integration and continuous deployment implementation. Virtual machines are a popular
choice for cloud computing because they can be easily scaled.

Conclusion
Each technology has it is own use cases, problems, and advantages. Engineers should know
their architecture, and analyze their needs. Then pick the right choice.

References:
1.https://www.ibm.com/blog/containers-vs-vms/
2.https://www.docker.com/resources/what-container/
3.https://en.wikipedia.org/wiki/Container
4 https://www.vmware.com/topics/glossary/content/hypervisor.html
5.https://en.wikipedia.org/wiki/Hypervisor
6.https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor
7.https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-

virtual-machine

162

ey
-
J—
~
Q)
=)
2]
[72]
L
o
Q
g
=
=
>
ot
o)
a2
o




