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ANNOTATION 

The article considers a boundary value problem for systems consisting of two 

differential equations of parabolic type to determine the heat-moist state of raw cotton in a 

direct-flow drum dryer. An approximate solution of the Galerkin method for the problem 

under consideration is constructed. The stability of the Galerkin method for the approximate 

solution of the problem under consideration is established under the condition of strongly 

minimal coordinate systems. 

Key words: mathematical model, algorithm, temperature, coordinate system, 

monotonicity, stability, strong minimality,. 

INTRODUCTION.  In the process of drying wet raw cotton, a complex non-stationary 

heat-mass transfer process occurs, which determines the external and internal states. 

External processes are characterized by mass transfer from the surface of raw cotton to the 

environment and heat transfer between the fiber and the environment. Important for 

maintaining the quality of the fiber and seeds during drying is the rate of distribution of heat 

and moisture of raw cotton through the drum dryer. [1-7]. 

In this paper, we study the problem of determining the heat-moist state of raw cotton 

during drying in a dryer. The speed of movement of raw cotton v is assumed to be constant 

and the same in the section of the installation. Let us assume that there is a convective heat 

exchange according to Newton's law between raw cotton and air. Then the warm-moist state 

of raw cotton in the dryer can be determined from the initial-boundary value problem in the 

form: 
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with initial  

T(x,0)=T0 ,   U(x,0)=U0                                      (2) 

and boundary conditions  
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where  Т, Тw – respectively, the temperature of raw cotton, drying agent;  U, Uw  – 

respectively, the moisture content of raw cotton and air;  ,,,с - respectively, the heat 

capacity, thermal conductivity, density and speed of movement of raw cotton,  - volumetric 

heat transfer coefficient between raw cotton and air; - phase transformation coefficient, r21 

- heat of vaporization, - drying time,   - installation length. 

SOLUTION METHOD. To solve this problem, we use the Bubnov-Galerkin projection 

method. We introduce two sets of basis functions and denote them by {i}, {i}. From the 

elements of the basis functions, we require that they have a second derivative with respect to 

the spatial variables. 

 We will look for approximate solutions of the system in the form [8-16] 
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where the coefficients сk(), dk() are determined from the system of equations 
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where   Qn=(ik),  Pn=(ik),  Gn=(ik),  iknQ ~
~

    iknP 
~~

  и  iknG ~
~

  square matrices of size 

(NxN);  

Cn()=(c1(),c2(),...,cn())T,   Dn()=(d1(), d2(),...,dn())T – desired vectors;  

F1n()=(f11(),f12(),...,f1n())T,   F2n()=(f21(),f22(),...,f2n())T given vectors. 

          Elements of vectors      F10()=(f01(),f02(),…,f0n())T               and 

        TnfffF  0020120

~
,...,

~
,

~
               are determined from the relations: 

     xUfxTf iiii  ,
~

,, 0000                         (6) 

 As is known, from the theory of ordinary differential equations, if the matrices are non-

degenerate and positive-definite, the system (5) composed of the coefficients of the system 

has a unique solution. 

        Selecting the basis functions and constructing implicit difference schemes on the interval 

[0;l], we obtain a system of algebraic equations: 
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      (7) 

The system of algebraic equations (7) is solved by the Gauss method. The found value Cnl(),  

Dnl() substituting (4) and we find the temperature and moisture content of raw cotton during 

the drying process.          

 We are now exploring question of the stability of problem (5). Let us assume that the 

coordinate systems {i (х)}, {i(х)} are strongly minimal in the space L2() i.e. there is a 

constant independent of n such that n

iqq 0 , where n

iq  are the eigenvalues of the matrix 

                            n
jkLjknQ

1,2

,


       n
jkLjknQ

1,2

,
~


   

 Let us assume that instead of the Galerkin system (5) we solve the “perturbed” system 
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                  (8) 

 

where  nC  , Dnl() - solution of the perturbed problem. 

  

A Galerkin process for a given problem is called stable if there exist positive constants рi 

independent of n such that for sufficiently small matrix norms 
nnn ГГГ ,,0  and for vector 

norms are performed inequalities 

    nnnn
E

nn ГpГpГpppCC
n
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An approximate solution U(r, )=(1n, 2n(r, ))T is called stable in the space L2(), if an 

inequality similar to (9) holds for the difference, where  

            



n

k

KiKin

T

nn rarrrrU
1

21
~,

~
,,

~
,,

~
,

~
    

Similarly, as in the previous paragraph, multiplying each of the equations of system (5) 

by the corresponding a1i (), a2i () and making similar calculations, one can establish a 

continuous dependence of the approximate solutions on the initial data and right-hand sides 

in the form: 
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In addition, taking into account the continuity of the given functions and using the 

mean value theorem, we can estimate 
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Hence, using the strong minimality of the basis functions in L2(), we can obtain the following 

inequalities: 
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where       Tiin aaG  21 ,  

 

Let the allowed errors Гn, Гn ,Гn, Гn are as follows 

 

     qeГn 1 ,    .0,10;2  qeqeГ in                  (12) 

 

Denote by       nnn GGZ 
~

.  

      Let us subtract the systems of equations (5) from the system of equations (7). The 

resulting equation is scalarly multiplied by )(nZ , i.e. 

         nnnnnnnnnnnn ZФZZZГPZZГQ
d

d  ,,,,
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   (13) 

 

where       nnnn GГGГФ   .  

      

         Since the matrix is positive definite, then                                   

                       0, 
n

nnnn ZZГP  . 

Then, estimating the terms of the right side of the equality             
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we obtain  
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 We integrate the last inequalities over . Paying attention to the inequality 
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On the other hand,  
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and by virtue of estimate (12) 
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Then we obtain a differential inequality for yn(), i.e. 
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from which, in turn, by virtue of the theorem on differential inequalities, the inequality 

follows [17-19] 
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Where constants  4,0iрi  do not depends on N.   Consequently,  
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where 2- is the right side of inequality (14). The last relations imply the stability of the 

algorithm for constructing an approximate solution and the numerical stability of the 

approximate solution in    

CONCLUSION.  An approximate solution of the Galerkin method is constructed for one 

boundary value problem of equations of parabolic type. The stability of the Galerkin method 

for the approximate solution of the problem under consideration is established under the 

condition of strongly minimal coordinate systems. 
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