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Abstract: This article has easy and a very nice application on how to solve elementary 

combinatorics problems using linear algebra  
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We have seen numerous applications of analysis and higher algebra in number theory 

and algebra. It is time to see the contribution of this ”non-elementary mathematics” to 

combinatorics. It is quite hard to imagine that behind a simple game, such as football for example 

or behind a quotidian situation such as handshakes there exists such complicated machinery, but 

this happens sometimes and we will prove it in the next. For the beginning of the discussion, the 

reader doesn’t need any special knowledge, just imagination and the most basic properties of the 

matrices, but, as soon as we advance, things change. Anyway, the most important fact is not the 

knowledge, but the ideas and, as we will see, it is not easy to discover that ”non-elementary” fact 

that hides after a completely elementary problem. Since we have clarifified what is the purpose 

of the unit, we can begin the battle. 

The first problem we are going to discuss is not classical, but it is easy and a very nice 

application of how linear-algebra can solve elementary problems. Here it is.  

Example 1. Let n ≥  3 and let An, Bnbe the sets of all even, respectively, odd 

permutations of the set {1,2,…, n}. Prove the equality  

∑ ∑|i − σ(i)|

n

i=1σ∈An

= ∑ ∑|i − σ(i)|

n

i=1σ∈Bn

 

Solution. Writing the difffference  

∑ ∑|i − σ(i)|

n

i=1σ∈An

− ∑ ∑|i − σ(i)|

n

i=1σ∈Bn

 

as 

∑ ε(σ)

σ∈Sn

∑|i − σ(i)|

n

i=1

= 0, 

Where 

ε(σ) = {
1, if σ ∈ An
−1, if σ ∈ Bn

 

reminds us about the formula  

det A = ∑ ε(σ)a1σ(1)a2σ(2)… anσ(n)
σ∈Sn
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We have taken here Sn = An ∪ Bn. But we don’t have any product in our sum! That is why we 

will take an arbitrary positive number a and we will consider the matrix A =  (a|i − j|)1 ≤ i, j ≤

n. This time,  

det A = (−1)ε(α)a|1−σ(1)|…a|−nσ(n)| = ∑ a∑ |i−σ(i)|n
i=1

σ∈An

− ∑ a∑ |i−σ(i)|n
i=1

σ∈Bn

 

This is how we have obtained the identity  

|
1 ⋯ xn−1

⋮ ⋱ ⋮
xn−1 ⋯ 1

| 

  Anyway, we still do not have the desired difference. What can we do  

to obtain it? The most natural way is to derive the last relation, which is  

nothing else than a polynomial identity, and then to take x =  1. Before doing that, let us 

observe that the polynomial  

|
1 ⋯ xn−1

⋮ ⋱ ⋮
xn−1 ⋯ 1

| 

is divisible by (x −  1)2 . This can be easily seen by subtracting the first line from the second 

and the third one and taking from each of these line x − 1 as common factor. Thus, the derivative 

of this polynomial is a polynomial divisible by x −  1, which shows that after we derive the 

relation (1) and take x = 1, in the left-hand side we will obtain 0. Since in the right-hand side we 

obtain exactly  

∑ ∑|i − σ(i)|

n

i=1σ∈An

− ∑ ∑|i − σ(i)|

n

i=1σ∈Bn

 

the identity is established. 

Here is another nice application of this trick. We have seen how many permutation do not 

have a fixed point. The question that arises is how many of them are even. Here is a direct 

answer to the question, using determinants.  

Example 2. Find the number of even permutations of the set  

{1, 2, . . . , n} that do not have fixed points.  

Solution. Let us consider Cn, Dn, respectively, the sets of even and odd permutations of 

the set {1, 2, . . . , n}, that do not have any fixed points. We know how to find the sum |Cn|  + |Dn|. 

We have seen it is equal to 

n! (1 −
1

1!
+
1

2!
− ⋯+

(−1)n

n!
). 

  Hence if we manage to compute the difference |Cn|  +  |Dn|, will be able to answer to the 

question. If we write  

|Cn| −  |Dn| = ∑ 1
σ∈An
σ(i)≠i

− ∑ 1
σ∈Bn
σ(i)≠i

, 

we observe that this reduces to computing the determinant of the matrix 

T = (tij)1≤i,j≤n
, where 

tij = {
1, if i ≠ j
0, if i = j

 

That is,  
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|Cn| −  |Dn| = [
0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

] 

But it is not difficult to compute this determinant. Indeed, we add all columns to the first one 

and we give n −  1 as common factor, then we subtract the first column from each of the other 

columns. The result is|Cn| −  |Dn| = (−1)
n−1(n − 1)and the conclusion is quite surprising:  

|Cn| =
1

2
n! (1 −

1

2!
+
1

3!
− ⋯+

(−1)n−2

(n − 2)!
) + (−1)n−1(n − 1). 

We will focus in the next problems on a very important combinatorial tool, that is the 

incidence matrix (cum se spune la matricea de incidenta?). What is this? Suppose we have a set 

X = {x1, x2, … , xn} and X1, X2, … , Xka family of subsets of X. Now, define the matrix A = (aij)i=1,n
j=1,k

, 

where 

aij = {
1, if xi ∈ Xj
0, if xj ∉ Xj

 

This is the incidence matrix of the family X1, X2, … , Xkand the set X. In many situations, 

computing the product A ∙ At helps us to modelate algebraically the conditions and the 

conclusions of a certain problem. From this point, the machinery activates and the problem is on 

its way of solving. 

 Let us discuss first a classical problem, though a diffiffifficult one. It appeared in USAMO 

1979, Tournament of the Towns 1985 and in Bulgarian Spring Mathematical Competition 1995. 

This says something about the classical character and beauty of this problem.  

Example 3. Let A1, A2, . . . , A(n+1) be distinct subsets of the set {1, 2, . . . , n}, each of 

which having exactly three elements. Prove that  there are two distinct subsets among them that 

have exactly one point in common.  

Solution. Of course, we argue by contradiction and suppose that  

|Ai ∩ Aj| ∈ {0,2} for all i ≠ j. Now, let T be the incidency matrix of the family A1, A2, … , An+1 

and compute the product 

T ∙ Tt =

(

 
 
 
 

∑tk1
2

n

k=1

⋯ ∑tktkn+1

n

k=1

⋮ ⋱ ⋮

∑ tkn+1tk1

n

k=1

⋯ ∑tkn+1
2

n

k=1 )

 
 
 
 

 

 

 But we have of course  

∑xki
2

n

k=

= |Ai| = 3 

and  

∑xkixkj

n

k=1

= |Ai ∩ Aj| ∈ {0,2} 

Thus, considered in the fifield (R2, +,·), we have  
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T ∙ Tt̅̅ ̅̅ ̅̅ ̅̅ = (
1̂ ⋯ 0̂
⋮ ⋱ ⋮
0̂ ⋯ 1̂

) 

where X̅is the matrix having as elements the residues classes of the  

elements of the matrix X. Since of course det X̅  =  det X̅̅ ̅̅ ̅̅ ̅, the previous  

relation shows that det T ∙ Tt is odd, hence non-zero. This means that  

 T ∙ Tt  is an invertible matrix of size n +  1, thus rank( T ∙ Tt  ) =  n +  1 which  

contradicts the inequality rank( T ∙ Tt  ) ≤ rankT ≤ n. This shows that our  

assumption was wrong and there exist indeed indices i ≠ j  such that |Ai ∩ Aj| = 1 

The following problem is very difficult to solve by elementary means, but the solution using 

linear-algebra is straightforward.  

Example 4. Let n be an even number and A1, A2, . . . , A(n+1) be distinct  

subsets of the set {1, 2, . . . , n}, each of them having an even number of  

elements. Prove that among these subsets there are two having an even  

number of elements in common.  

Solution. Indeed, if T is the incidency matrix of the family  

A1, A2, . . . , A(n+1), we obtain as in the previous problem the following rela 

tion  

T ∙ Tt = (
|A1| ⋯ |A1 ∩ An|
⋮ ⋱ ⋮

|An ∩ A1| ⋯ |An|
) 

 

Now, let us suppose that all the numbers |Ai ∩ Aj|are odd and  

interpret the above relation in the field (R2, +,·). We find that  

which means again that det T ∙ Tt is odd. Indeed, if we work in  

(R2, +,·), we obtain  

|
0̂ ⋯ 1̂
⋮ ⋱ ⋮
1̂ ⋯ 0̂

| = 1̂ 

The technique used is exactly the same as in the second example,only this time we work in a 

different field. Note that this is the moment when we use the hypothesis that n is even. Now, 

since det T ∙ Tt = det
2

T, we obtain that det Tis also an odd number. Hence we should try to 

prove that in fact det Tis an even number and the problem will be solved. Just observe that the 

sum of elements of the column i of T is |Ai|,hence an even number. Thus, if we add all lines to 

the first line, we will obtain only even numbers on the first line. Since the value of the 

determinant doesn’t change under this operation, the conclusion is plain: det Tis an even 

number. Since a number cannot be both even and odd, our assumption was wrong and the 

problem is solved. 
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