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ABSTRACT: This research investigates the operational reliability of transformers in 

the Qibray 35/6 substation by forecasting load conditions using Feed Forward Neural 

Networks (FNN). The study focuses on analyzing transformer load behavior over time and 

predicts when the load will exceed critical thresholds. Using primary data from 2021 to 2023, 

the study develops a forecasting algorithm based on FNN, which is used to predict when 

transformer loads exceed 85% of their nominal capacity. Results indicate that in the near 

future, the transformer load will enter a hazardous zone, reaching over 0.8 after 8 years and 

fully entering the critical range after 12 years. The study emphasizes the importance of load 

redistribution and the installation of new equipment to ensure the continuous and reliable 

operation of the electrical grid 

Keywords: Transformer load forecasting, Feed Forward Neural Network (FNN), load 

distribution, operational reliability, Qibray substation, digital twin, load management, critical 

load thresholds. 

 INTRODUCTION 

Currently, substations are equipped with modern metering, relay protection, and 

automated control systems. The integration of these modern metering, relay protection, and 

automated control systems in substations represents a significant advancement in the field of 

electrical energy distribution and management. This integration provides several key 

advantages that enhance the efficiency, reliability, and safety of the power network [45,46]. 

Modern metering systems integrated into substations offer real-time energy consumption 

data, which provides accurate information for better analysis of usage patterns, identifying 

peak usage times, and further optimizing load distribution planning [47,48,49]. Automated 

control systems in substations enable intelligent and automated management of energy 

distribution, ensuring power delivery to various areas based on demand, optimizing load 

distribution, and reducing losses [52]. However, these systems cannot forecast future load 

conditions accurately. 

It is known that the normal load factor of a power transformer represents the average 

percentage of the transformer's nominal power used over a specific time period. Operating 

the transformer within its normal load factor range is crucial for ensuring efficient and 

reliable performance [53,54]. The load factor is typically expressed as a percentage of the 

transformer's nominal power. A common practice in energy systems is to operate 

transformers with a load factor between 70% and 80% of their nominal capacity to ensure 

optimal performance, efficiency, and extended lifespan [55,56]. Operating a transformer 

below 30% or above 90% of its nominal capacity can lead to inefficiencies and negatively 

impact the transformer’s lifespan and reliability [56,58]. It is important for system operators 

and engineers to closely monitor transformer loads and manage load distribution to maintain 
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the appropriate normal load factor, balancing reliability and economic efficiency with the 

transformer’s condition and capabilities. 

During the research, load variations of two 4000 kVA transformers at the Qibray 

substation (the research object) with a 35/6 kV configuration were analyzed. Initially, the 

total capacity of auxiliary transformers at the studied site was examined for load variation. 

 METHODS 

To achieve the objectives of the study, a systematic approach was employed that 

combined empirical data collection, statistical analysis, and advanced forecasting using 

artificial intelligence techniques. The research methodology began with the collection of 

primary data on transformer loads at the Qibray 35/6 kV substation. Measurements were 

recorded using a radiometer system, capturing parameters such as three-phase currents, 

voltages, active and reactive power, and power factor levels for all months between January 

2021 and April 2023. The data was preprocessed by calculating the minimum and maximum 

load coefficients for each transformer and analyzing their variations over time to identify 

trends and anomalies. The statistical adequacy of the load coefficient data was assessed using 

the Gaussian distribution law. This was implemented through IBM SPSS software, which 

confirmed the suitability of the primary data for further modeling without requiring 

additional fitting procedures. The load forecasting methodology utilized a Feed Forward 

Neural Network (FNN) configured with one hidden layer of 10 neurons, ReLU activation, and 

an output layer of a single neuron. The FNN was trained using an 80-15-5 split of the data into 

training, validation, and test sets, with 100 epochs and a batch size of 16. Pearson correlation 

analysis was applied during the training process to validate the model's accuracy, ensuring 

that the correlation between predicted and actual values exceeded 0.7 before proceeding with 

predictions. 

The forecasting algorithm focused on determining the time frame in which transformer 

loads would exceed the critical threshold of 0.85. By iteratively predicting load coefficients in 

three-value increments and averaging these values, the model identified critical load 

milestones. If the predicted average exceeded 0.85, it indicated the onset of a hazardous 

operational condition. This iterative forecasting method allowed for proactive identification of 

risks, enabling recommendations for load redistribution, infrastructure upgrades, and the 

development of a digital twin for real-time monitoring and management of the Qibray 

district’s electrical grid. 

 RESULT AND DISCUSSION 

Figure 1. Load variation of the first transformer over three days (in kva) at the research 

object (data from the radiometer system) 

The load graphs of the transformers at the research object were very similar to each 

other. As seen in Figure 1.12, the transformer operates with more than 70% of its capacity for 

most of the observed times. Additionally, the maximum and minimum load values change 

from day to day. Therefore, it is necessary to continuously monitor the transformer’s load and 

analyze its performance, determining these values (i.e., the maximum and minimum load 

limits) in order to bring them to the target values. 

In the next stage, the future expected loads of the transformers at the Qibray substation 

were forecasted using artificial intelligence, specifically the Feed Forward Neural Network 

(FNN) approach. It should be emphasized that the initial step in forecasting the future 

expected loads of the transformers involves data collection and primary data processing [15]. 
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For the research, data was collected from a radiometer system, recording the following 

parameters for each supplier (Figure 1.13): 

Three-phase currents (A) in all phases. 

Voltages in all phases (kV). 

Active power (kW). 

Reactive power (kVAR). 

Power factor (level). 

 

 
Figure 2. Interface of the radiometer digital system 

 

As primary data, measurements were taken for all months of 2021, 2022, and the 

period from January to April 2023. The monthly average maximum and minimum load 

coefficients for the two 35/6 transformers were calculated using the following formula: 

0

fS
k

S
    (1) 

where, Sf – The actual value of the total power,, Sf – nominal power. 

The average minimum (𝑘мин) and maximum (𝑘мах)   values of the load coefficient calculated 

using formula (1) were accepted as primary factors (Table 1.3). The load coefficient values of 

the two transformers located at the research object from January 2021 to April 2023 are 

shown below. 

 

Table 1. Primary data for forecasting 

Ой.йил 
T1 T2 

𝑘мин 𝑘мах ∆𝑘 𝑘мин 𝑘мах ∆𝑘 

1.2021 0,26 0,73 0,47 0,26 0,75 0,49 

2.2021 0,25 0,82 0,57 0,27 0,87 0,60 

3.2021 0,23 0,98 0,75 0,25 1,01 0,76 

4.2021 0,23 0,98 0,75 0,24 1,06 0,82 

5.2021 0,24 0,88 0,64 0,24 0,89 0,64 

6.2021 0,24 0,78 0,54 0,26 0,85 0,59 

7.2021 0,33 0,97 0,64 0,34 1,02 0,68 

8.2021 0,32 0,95 0,63 0,35 1,02 0,67 

9.2021 0,27 0,76 0,49 0,28 0,82 0,54 

10.2021 0,25 0,96 0,71 0,25 1,04 0,78 

11.2021 0,29 0,78 0,49 0,31 0,84 0,53 

12.2021 0,31 0,95 0,64 0,34 1,02 0,68 

1.2022 0,35 0,80 0,45 0,38 0,86 0,47 
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2.2022 0,37 0,90 0,53 0,37 0,98 0,61 

3.2022 0,32 0,81 0,49 0,33 0,84 0,51 

4.2022 0,38 0,81 0,43 0,41 0,87 0,46 

5.2022 0,38 0,94 0,56 0,40 1,01 0,61 

6.2022 0,35 0,95 0,60 0,37 1,02 0,64 

7.2022 0,36 0,95 0,59 0,38 0,99 0,61 

8.2022 0,43 0,93 0,50 0,43 0,95 0,51 

9.2022 0,35 1,00 0,65 0,38 1,04 0,66 

10.2022 0,40 0,85 0,45 0,40 0,92 0,51 

11.2022 0,45 0,92 0,47 0,48 0,98 0,50 

12.2022 0,45 0,95 0,59 0,39 0,97 0,58 

1.2023 0,42 0,95 0,56 0,40 0,98 0,58 

2.2023 0,46 1,00 0,56 0,45 1,02 0,57 

3.2023 0,47 0,92 0,48 0,45 0,96 0,51 

4.2023 0,47 0,85 0,42 0,46 0,88 0,42 

 

In Table 1.3, in addition to the values  𝑘мин and  𝑘мах  the difference ∆𝑘 between them is 

also presented. From the reduction of this value, it can be inferred that as the years progress, 

the loads have increased, and the difference between the maximum and minimum loads has 

been decreasing. Additionally, considering that transformers begin to operate inefficiently 

when the load exceeds 90%, the load threshold can be set at 85%.    c 

When analyzing the maximum values presented in Table 1.3, it can be observed that 

they have already exceeded 85%. In Transformer T1, this situation occurred 18 times among 

the 28 observed time series data, and in Transformer T2, it occurred 23 times. This indicates 

that the transformers operated with an average load of 80%. From the 3-day time period 

shown in Figure 1.12, it can be seen that during over 70% of the observed time, the 

transformer loads were above 85%. Given that this situation is already abnormal, it is 

sufficient to forecast the issue based only on the minimum load values. 

To do this, first, the adequacy of the 𝑘мин  values for each transformer was determined 

using the Gaussian distribution law in IBM SPSS, as shown in Figures 3 and 4. 

 
Figure 3. Checking the First Data Using the Gaussian Normal Distribution Law 
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Figure 4. Checking the second data using the gaussian normal distribution law 

 

The values shown in Figures 2 and 3 indicate that the primary data accepted can be used in 

the next stage. This suggests that there is no need to build a Fit model in this case. For 

forecasting, it is recommended to split the primary data into 80% train set, 15% validation 

set, and 5% test set. 

In the calculation of load coefficients, Feed Forward Neural Network (FNN) was used. It has 

2 layers, 1 hidden layer, and 1 output layer. The FNN parameters were set to 100 epochs and a 

batch size of 16. The hidden layer contains 10 neurons, and the activation function used is 

ReLU (Rectified Linear Unit). The output layer consists of a single neuron with no activation 

function. 

 
Figure 5. Algorithm for forecasting the time when transformer load exceeds the allowed 

value 
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Forecasting is carried out based on the algorithm shown in Figure 1.16. In this algorithm, 

the model is first trained using the train data, and results corresponding to the training data 

are obtained. The obtained results are evaluated for their correspondence with the input 

values using Pearson correlation. If the Pearson correlation is less than 0.7, the algorithm is 

returned for retraining. Otherwise, the next 3 load coefficients are predicted. It should be 

emphasized here that what is important is not the state of the exact next values, but when the 

transformer load exceeds 0.85. 

The main objective was to calculate how long it would take for the transformer load to 

increase in order to make the necessary adjustments. Based on this, the next 3 values are 

predicted, and their average values are calculated. If the average value is below 0.85, the 

predicted values are re-entered into the initial data list, and the next 3 values are forecasted. 

This process continues until the time when the load exceeds the 0.85 value is determined. 

 

 
Figure 6. Forecast results of the first transformer load using the fnn neural network (only the 

results for the first transformer are shown as the load of both transformers is nearly identical) 

  

The results obtained using the FNN neural network, as shown in Figure 5, demonstrate 

that if the load dynamics of the transformers continue in the same manner, the minimal load 

will exceed 0.8 after 8 years, and after 12 years, it will fully enter the hazardous zone. 

Considering that the aging coefficient of the transformers and the occurrence of minimal loads 

is 20% based on Figure 1, this situation is already critical. The maximum load has already 

reached its peak. In this case, it is essential to urgently review the issue of redistributing the 

load in the Qibray 35/6 substation and its distribution networks, install new equipment, and 

develop a digital twin of the Qibray district’s electrical grid for constant monitoring. 

.CONCLUSION 

The study highlights the importance of forecasting transformer loads to ensure operational 

reliability and prevent overloads. The results show that the load on transformers at the 

Qibray 35/6 substation is expected to increase significantly over the next decade, potentially 

reaching hazardous levels. It is crucial to address this issue promptly through load 

redistribution, the installation of new equipment, and the development of a digital twin for 

constant monitoring. The findings underline the significance of predictive models, such as 

FNN, in maintaining the stability and efficiency of electrical networks, particularly as the 

demand for electricity grows over time. 

  



IB
E

T
 |

 V
o

lu
m

e
 4

, I
ss

u
e

 1
, J

a
n

u
a

ry
 

 

71 

INTERNATIONAL BULLETIN OF ENGINEERING 

AND TECHNOLOGY UIF = 9.1 | SJIF = 7.53 ISSN: 2770-9124 

IBET 

IB
E

T
 | 

V
o

lu
m

e
 4

, I
ss

u
e

 1
1

, N
o

v
e

m
b

e
r 

IBET 

 

References: 
1.ABB Group. (n.d.). Feeder Protection and Control REF620 IEC. ABB. Retrieved from 

https://new.abb.com/medium-voltage/digital-substations/protection-relays/feeder-

protection-and-control/feeder-protection-and-control-ref620-iec 

2.Siemens AG. (n.d.). SIPROTEC 5 Digital Protection Relays and Control. Siemens. Retrieved 

from https://www.siemens.com/global/en/products/energy/energy-automation-and-smart-

grid/protection-relays-and-control/siprotec-5.html 

3.Bhattar, C., & Chaudhari, M. (2023). Centralized energy management scheme for grid-

connected DC microgrid. IEEE Systems Journal, PP(1-11). 

https://doi.org/10.1109/JSYST.2022.3231898 

4.Cho, J., Yoon, Y., Son, Y., Kim, H., Ryu, H., & Jang, G. (2022). A study on load forecasting of 

distribution line based on ensemble learning for mid- to long-term distribution planning. 

Energies, 15(9), 2987. https://doi.org/10.3390/en15092987 

5.Yan, S., & Hu, M. (2022). A multi-stage planning method for distribution networks based on 

ARIMA with error gradient sampling for source–load prediction. Sensors, 22(21), 8403. 

https://doi.org/10.3390/s22218403 

6.Nayak, S., Chandan, M., Ambiger, P., & Patil, S. (2023). Development and implementation of 

transformer breather health monitoring system using IoT. Proceedings of the International 

Journal for Research in Applied Science & Engineering Technology. 

https://doi.org/10.22214/ijraset.2023.55632 

7.General Electric Company. (n.d.). Multilin 750/760 Feeder Protection Systems. GE Grid 

Solutions. Retrieved from 

https://www.gegridsolutions.com/products/brochures/750760_gea31955.pdf 

8.IEC. (2020). IEC 61850: Communication Networks and Systems for Power Utility 

Automation. International Electrotechnical Commission. 

9.National Fire Protection Association (NFPA). (2021). NFPA 70E: Standard for Electrical 

Safety in the Workplace. NFPA. 

10.Zhang, X., & Sun, Z. (2023). Application of improved probabilistic neural network (PNN) in 

transformer fault diagnosis. Processes, 11(2), 474. https://doi.org/10.3390/pr11020474 

11.Wang, L., Fan, Y., Yang, X., Li, B., Li, W., Xue, J., Wang, H., Wang, G., & Guo, X. (2023). 

Exploration of transformer operation and maintenance technology and realization of 

transformer condition monitoring system. In Advances in Power and Energy Engineering (pp. 

875-890). Springer. https://doi.org/10.1007/978-981-99-1439-5_75 

12.Faqih, M., Binti Omar, M., & Ibrahim, R. (2023). Prediction of dry-low emission gas turbine 

operating range from emission concentration using semi-supervised learning. Sensors, 23(8), 

3863. https://doi.org/10.3390/s23083863 

13.Svozil, D., Kvasnicka, V., & Pospíchal, J. (1997). Introduction to multi-layer feed-forward 

neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43-62. 

https://doi.org/10.1016/S0169-7439(97)00061-0 

14.Balanta, J. Z., Rivera, S., Romero, A. A., & Coria, G. (2023). Planning and optimizing the 

replacement strategies of power transformers: A literature review. Energies, 16(11), 4448. 

https://doi.org/10.3390/en16114448 


